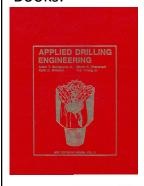
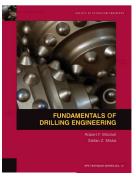


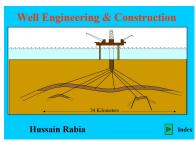
جامعة البصرة كلية الهندسة - قسم هندسة النفط

PeE413 Petroleum Drilling Eng.

2019-2020


1


Syllabus


- Casing landing (landing as cemented, landing in tension at the freeze point, landing in compression at the freeze point),
- buckling phenomenon,
- wellhead loads, blowout and blowout prevention,
- well kick (methods of control, drillers method, engineers method),
- ➤ factors affecting drilling rate (effect of pressure, effect of physical properties of drilling mud, effect of weight on bit and rotary speed economical effect),
- hole problems (pipe sticking, surge and swab pressure, hole deviation),

References

Books:

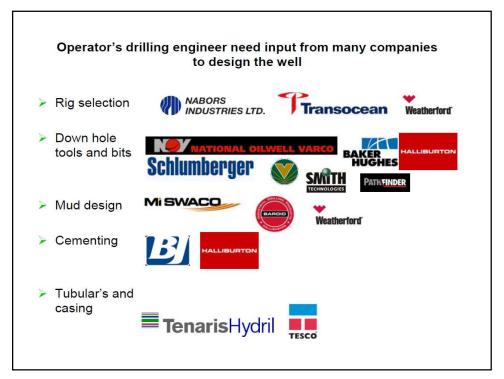
Petrowiki:

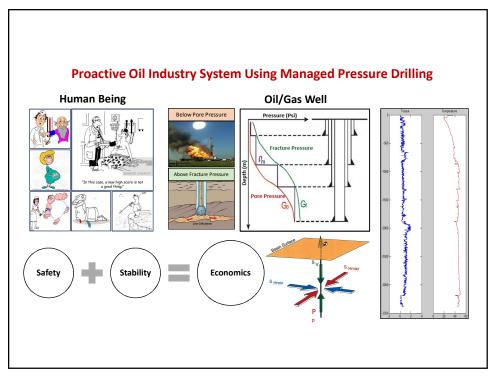
PetroWiki

3

Instructor

- Ethar H. Khalil
- Ph.D. in Petroleum Eng. (Drilling Automation) from Missouri University of Science and Technology, USA, 2018
- M.Sc. in Petroleum Eng. (Drilling Automation) from Missouri University of Science and Technology, USA, 2016
- M.Sc. in Mechatronics Eng. (Automation) from Baghdad University, 2008.
- B.Sc. in Mechatronics Eng. (Automation) from Baghdad University, 2008.
- e-mail: ehk9r3@mst.edu
- · Office: Petroleum Eng. Dept.
- Office hours: Mon. 9am to 11am.

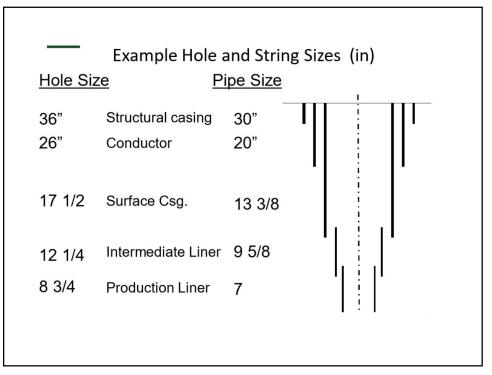

Lecture # 1 PTEN403

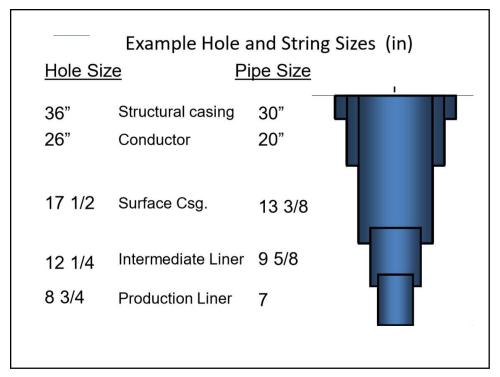

Casing Design Review

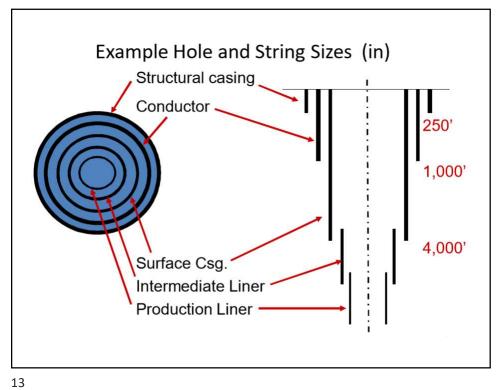
5

Task for designing a well

- 1. Well objectives
- 2. Casing design
- 3. Wellheads/BOP and Rig selection
- 4. Mud weight and mud design
- 5. Cementing and cement design
- 6. Drill stem and BHA design
- 7. Hydraulics
- 8. Bit selection and nozzle selection
- 9. Drilling time and drilling cost

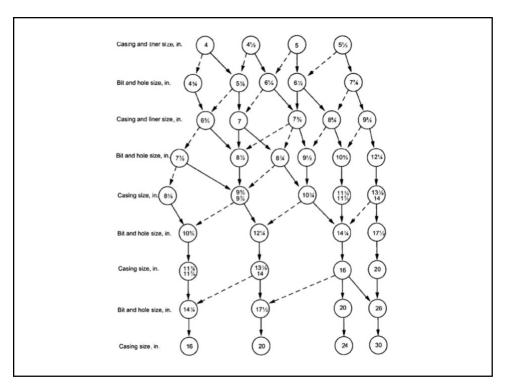

Well objectives


- Type of well exploration, appraisal, production, injection well
- > Type of data gathering, production tests, coring logging...
- Completion methods and completion/production tubing sizes.
- > Future side tracks


9

Casing Design

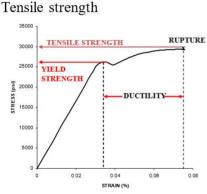
- Why Run Casing?
- Types of Casing Strings
- Classification of Casing
- Casing design
- Define the Casing Points
- Hole and Casing Sizes
- Pipe strength
- Burst, Collapse and Tension Calculations



Casing Size (OD in.)	Coupling Size (OD in.)	Common Bit Sizes Used (in.)
4 1/2	5.0	6, 6 1/8, 6 1/4
5	5.563	6 1/2, 6 3/4
5 1/2	6.050	7 7/8, 8 3/8
6	6.625	7 7/8, 8 3/8, 8 1/2
6 5/8	7.390	8 1/2, 8 5/8, 8 3/4
7	7.656	8 5/8, 8 3/4, 9 1/2
7 5/8	8.500	9 7/8, 10 5/8, 11
8 5/8	9.625	11, 12 1/4
9 5/8	10.625	12 1/4, 14 3/4
10 3/4	11.750	15
13 3/8	14.375	17 1/2
16	17	20
20	21	24, 26

Classification of CSG.

- 1. Outside diameter of pipe e.g. 9 5/8"
- 2. Wall thickness e.g. 1/2"
- 3. Grade of material e.g. N-80
- 4. Type to threads and couplings e.g. API LCSG
- Length of each joint (RANGE) e.g. Range 2 (31 ft), Range 3 (46 ft)
- 6. Nominal weight (Avg. wt/ft incl. Wt. Coupling) (e.g. 47 lb/ft)


15

Stress and strain in Steel

Stress and strain curve provides

Yield strength
Tensile strength

Stress = Load/Area (psi)

Bulk Stress → overload failures
Point stress → fatigue failures

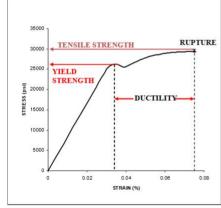
Strain = $\Delta L/L$ (%)

Elastic strain is temporary Plastic strain is permanent

Yield strength

The stress level where a plastic strain starts to occur

Tensile strength


The stress level where the material brakes

17

Stress and strain in Steel

Stress and strain

are determined by applied tensile load and measuring deformation.

Ductility

Is the amount of plastic strain the steel can withstand without breaking Ductility is good

Drill stem design limit

Drill string is designed to limit stresses to yield strength A design factor is applied to the yield strength to ensure the operating stresses are less than the yield stress.

HW: Why run casing?		